LOW CARBON NOW
for Multi-Unit Residential
Developments in Toronto

Building Smarter Structures: A Study in
Low Embodied Carbon Structural Strategies

Embodied Carbon
 of Baseline Building

The structure of a typical residential tower can account for over 60\% of the total embodied carbon of the building. Therefore, optimizing the structural layout to reduce quantities and minimize embodied emission is fundamental for our path towards Net Zero. The following study was developed to evaluate the embodied carbon of various structural systems and determine the optimal approach to a low-carbon pathway. A baseline building was developed, representing typical construction and design practices for a concrete residential tower in Toronto, in order to serve as a baseline for comparison.

```
Building Archetype
Building Archetype
```

40-storey multi-unit residential building in Toronto
6 levels of podium
4 levels of below-grade parking

- 1800 mm transfer slab at level 2
Shear walls and columns vertical structure
. 200 mm flat slabs
Conventional concrete mix design
Cantilever balconies

Foundation Design Assumptions

The below-grade structure was designed as a tanked foundation system to meet the City of Toronto Foundation Drainage Provisions. The following assumptions were made on the soil properties
(4) Groundwater table is between P1 and P2 elevation.

Bearing capacity of soil/rock: 1100 kPa ULS.
No surcharge loading from adjacent buildings.
Embodied Carbon Impact of Balconies
The baseline structure was also designed without balconies to understand the embodied carbon emissions of the balconies.
Results: Total GWP Intensity (A-C) of the building structure without balconies: 409 $\mathrm{kgCO} \mathrm{C}^{2} / \mathrm{m}^{2}$
Conclusion: Balconies add roughly 3% embodied carbon to the structure.
Note: the various structural studies presented in this document did not include balconies.

Embodied Carbon Results

Life-Cycle Stage	GWP	GWP Intensity
	(tonnes $\mathrm{CO}_{2} \mathrm{e}$)	($\mathrm{kg} \mathrm{CO}_{2} \mathrm{e} / \mathrm{m}^{2}$)
A1-A3-Construction Materials	9,890	352
A4 - Transportation to Site	203	7
A5 - Construction/Installation Process	1,293	46
C1- Deconstruction/Demolition	95	3
C2 - Waste Transportation	221	8
C3 - Waste Processing	7	0
C4 - Waste Disposal	114	4
Total A-C	11,823	421

Embodied Carbon Distribution per Structural Element

Slab Strategies

EN for the Tower

Slabs typically account for about 40\% of the total embodied carbon in the structure, serving as a carbon sink in the building. As such, reducing material quantities in the slabs will have the greatest impact on reducing emissions, but will also reduce the loads carried from the slabs down to the carried from the slabs down to the
foundations. In this study we evaluated two slab construction strategies for the two slab construction strategies for the 200 mm reinforced concrete slab, which reduced the slab thickness

Embodied Carbon Analysis

Tower layout and structural propertiesVertical Elements = Discrete Columns

- Grid $=6.5 \mathrm{~m} \times 6.5 \mathrm{~m}$

Floor plate $=25 \mathrm{~m} \times 30 \mathrm{~m}$
No. of Tower Stories $=33$

- Slab $f^{\prime} \mathrm{c}=35 \mathrm{MPa}$

Column \& Core Wall $f^{\prime} \mathrm{c}=35-60 \mathrm{MPa}$
LCA Scope: Modules A1-A5, C1-C4

Construction Strategies for Slab Thickness - Tower

	Slab System	Slab Thickness (mm)		Comments
Baseline	Reinforced Concrete Slab	200	Typical slab system in Toronto.	
AchievableReinforced Concrete Slab- Backshoring Method	180	Reduction in slab thickness was achieved on the same grid layout with a reshoring procedure practiced in Western Canada where the cast slab is cured to 70% of the specified design strength or 25MPa minimum, upon which the formwork is sequentially removed and backshored inmediately.		
Design Limit	Post-Tensioned Slab	165	Slab thickness is fairly thin and can be impractical. Post-tensioned slabs are typically used to get longer spans for the same slab depth. A 165 mm PT slab is doable but acoustic issues arise which need to be addressed.	

Embodied Carbon Results - Tower as a Whole

Slab System	GWP	GWP Intensity
	(tonnes $\left.\mathrm{CO}_{2} \mathrm{e}\right)$	$\left(\mathrm{kg} \mathrm{CO}_{2} \mathrm{e} / \mathrm{m}^{2}\right)$
Baseline -200 RC Slab	4,968	221
Achievable -180 RC Backshoring*	4,740	210 (-5%)
Design Limit - 165 PT Slab**	4,479	199 (-10%)

Fig. 2 Scope of Slab \& Column Layout Strategy for EC Analysis

Embodied Carbon Results - Tower Slabs Only

Slab System	GWP	GWP Intensity
	$\left(\mathrm{kg} \mathrm{CO}_{2} \mathrm{e}\right)$	$\left(\mathrm{kg} \mathrm{CO}_{2} \mathrm{e} / \mathrm{m}^{2}\right)$
Baseline -200 RC Slab	2,683	119
Achievable - 180 RC Backshoring*	2,457	109 (-8%)
Design Limit - 165 PT Slab** *	2,201	98 (-18%)

*Acoustic elements for a 180 mm slab would add about $115,914 \mathrm{~kg} \mathrm{CO}_{2}$ e or $5.1 \mathrm{~kg} \mathrm{CO}, \mathrm{e} / \mathrm{m}^{2}$. *Acoustic elements for a 165 mm slab would add about $215,054 \mathrm{~kg} \mathrm{CO}_{2}$ e or $9.5 \mathrm{~kg} \mathrm{CO}_{2} 2 / \mathrm{m}^{2}$.

$$
0
$$

Slab Study Takeaways
Reducing the slab thickness below 200 mm introduces acoustic requirements. The added embodied carbon from the acoustic elements cuts the percent reduction of the thinner slabs by half.

Construction of typical reinforced concrete slabs in Western Canada typically practice reshoring method. Trades in the GTHA do not practice this method and we therefore need trades onboard very early in the project to achieve this.
Post-tensioned slabs are not standard construction in Ontario. Could be difficult to obtain trades and costly to execute

Thin slabs (i.e, 165 mm) can be impractical, such as introduce limitations on slab anchorage.

Fig. 1 Tower Grid Layout

Column Layout
 Strategies for Tower

The column layout is mainly defined based on the architectural program Typical residential buildings have a grid layout of 6.5 m by 6.5 m for $a^{2} 200 \mathrm{~mm}$ slab. The following study was conducted to evaluate the embodied carbon impact of two larger grid layouts in order to determine the optimal approach for the suite layout.

Embodied Carbon Analysis
Tower layout and structural properties:
(O) Vertical Elements $=$ Discrete Columns
Slab thickness $=200 \mathrm{~mm}$
Slabf'c $=35 \mathrm{MPa}$

- Floor plate $=25 \mathrm{~m} \times 30 \mathrm{~m}$
- Column \& Core Wall f'c $=35-60 \mathrm{MPa}$
LCA Scope: Modules A1-A5, C1-C4

Fig. 4 Achievable Tower Grid Layout
7.5 m by 7.5 m

Fig. 5 Design Limit Tower Grid Layout -

No. of Tower Stories $=33$

Design Strategies for Column Layout - Tower
Embodied Carbon Results - Tower as a Whole

Slab System		Grid Layout	Comments
Baseline	Reinforced Concrete Slab	$6.5 \mathrm{~m} \times 6.5 \mathrm{~m}$	Typical slab and grid system in Toronto.
Achievable	Reinforced Concrete Slab-Backshoring Method	7.5mx7.5m	Reduction in slab thickness was achieved on the same grid layout with a reshoring procedure practiced in Western Canada where the cast slab is cured to 70% of the specified design strength or 25 MPa minimum, upon which the formwork is sequentially removed and backshored immediately.
Design Limit	Post-Tensioned Slab	$8.5 \mathrm{~m} \times 8.5 \mathrm{~m}$	Post-tensioned slab construction is atypical for Toronto residential buildings.

Column Layout Study Takeaway

Achievable grid layout is limited to the architectural program, i.e., suite layouts, parking layouts, etc.

There is minimal embodied carbon impact to adjusting the grid layout for this specific study.
The Achievable slab system demonstrates a slight increase in embodied carbon due to the higher steel reinforcement density required in the slabs to accommodate the longer spans. The additional rebar adds more GWP than the savings achieved in the columns.

Lateral System
 Strategies for Tower

Structural walls are estimated to account for up to 25% of the total embodied carbon in the structure. Therefore, designing a lateral system that minimizes walls can have a considerable impact on the embodied emissions. Typical construction practice in a residential building in Toronto consists of walls between suite and a central core. In this study we evaluated the embodied carbon impact of two alternative approaches, which consisted of wallumns with a central core and fin wall, and columns with a central core and fin wall.

Lateral System Options - Tower

Option 1: Shear Walls between Suites

Option 2: Wallumns

Embodied Carbon Results - Tower as a Whole

Lateral System	GWP Structure	GWP Intensity Structure	GWP Intensity Demising Walls	GWP Intensity Demising Walls \& Structure
	(tonnes $\mathrm{CO}_{2} \mathrm{e}$)	(kg CO2 $\mathrm{e}^{\left(\mathrm{m}^{2}\right)}$	($\mathrm{kg} \mathrm{CO}_{2} \mathrm{e} / \mathrm{m}^{2}$)	($\mathrm{kg} \mathrm{CO}_{2} \mathrm{e} / \mathrm{m}^{2}$)
1. Shear Walls between Suites	5,439	241		241
2. Wallumns	5,281	$\begin{gathered} 234 \\ (-2.9 \%) \end{gathered}$	+2.0	$\begin{gathered} 237 \\ (-2.1 \%) \end{gathered}$
3. Discrete Columns	5,014	$\begin{gathered} 223 \\ (-7.8 \%) \end{gathered}$	+3.9	$\begin{gathered} 227 \\ (-6.2 \%) \end{gathered}$

Embodied Carbon of Tower Structure per Lateral System

Lateral System Study Takeaways

Architectural demising walls are required between suites in lieu of shear walls, The addition of demising walls introduces a slight increase in embodied carbon to the building.

Transfer Options

for the Podium

Transfer systems are both costly and carbon-heavy due to the large volume of reinforced concrete required to transition the loads between floors. The optim solution is to avoid or limit transfers altogether, ideally by having the vertical elements extend from top to bottom without interruption. However, residentia buildings in Toronto typically have at least one transfer floor which is often in the form of a transfer slab

Orthogonal Transfer

оritoconal L Lab bano transfer system

Non-Orthogonal Transfer Layout

$\frac{\text { orthoconal transfer slab sistem }}{\mathrm{MS}}$

non-orthogonal transfer s sLa system

$\frac{\text { ORTHOGONAL WAL BeAM TRANSERER SYTEM }}{\text { SS }}$

NON-ORTHOGONAL WALL BEAM TRANSEER SSSTEM

Structural Properties

Transfer System Parameters			
Bay Size 9	$9 \mathrm{~m} \times 9 \mathrm{~m}$		
Floor Plate 11.4	$11.4 \mathrm{~m} \times 11.4 \mathrm{~m}$		
Typical Slab Thickness 30	300 mm		
Transfer Slab Thickness 1	$1200 \mathrm{~mm}^{*}$		
Slab \& Transfers f'c 3	35 MPa		
Transfer Load 1200	$12,000 \mathrm{kN}$ (typical for 25 to 30-storey residential tower)		
*Original study was conducted for a 20-storey residential tower. The transfer slab for a 40-storey tower would be about 1800 mm deep.			
Embodied Carbon Results			
Transfer Layout	A1-A3 GWP	Total A-C* GWP	
	$\left(\mathrm{kg} \mathrm{CO} 2 \mathrm{e} / \mathrm{m}^{2}\right)$	$\left(\mathrm{kg} \mathrm{CO} 2 \mathrm{e} / \mathrm{m}^{2}\right)$	\% Difference
Orthogonal Slab Band	494	583	+62\%
Orthogonal Transfer Slab	b 706	811	+126\%
Orthogonal Wall Beam	295	359	Lowest EC
Non-Orthogonal Slab Band	and 734	844	+135\%
Non-Orthogonal Transfer Slab	- 719	826	+130\%
Non-Orthogonal Wall Beam	eam 444	524	+46\%

*Includes the following life-cycle stages: A1-A3, A4, A5, C1-C4.

Transfer Study Takeaways
The viable transfer system is highly dependent on the grid layout.
Wall beams prevent access to areas, introducing architectural limitations. Additionally, non-orthogonal wall beam systems are impractical as they create inaccessible areas.

Greatest impact on reducing embodied carbon with transfer systems is achieved by limiting transfers to a single floor \& minimizing the number of transfers.

Below-Grade

Parking Options

Below-grade parking structures add a significant amount of embodied carbon to the building due to the volume of concrete required to construct them. Typical residential towers in Toronto have four levels of parking, which was estimated to account for a quarter (28\%) of the total embodied carbon of the baseline building structure in this research program. Therefore, the following study evaluates the embodied carbon impact of reducing the number of parking levels and the contribution these alternative options have on the building as a whole.

Embodied Carbon Results - Whole Building

Underground Parking System	Total A-C GWP				
	GWP (tonnes $\left.\mathrm{CO}_{2} \mathrm{e}\right)$	GWP Intensity $\left(\mathrm{kg} \mathrm{CO}_{2} \mathrm{e} / \mathrm{m}^{2}\right)$	\% Difference from Option 1	\% of Below-Grade Structure Contriution	
Option 1	4 Levels Below-Grade	11,477	409	-	28%
Option 2	3 Levels Below-Grade	11,010	392	-4%	25%
Option 3	2 Levels Below-Grade	10,611	378	-8%	22%
Option 4	1 Level Below-Grade	9,288	331	-12%	11%
Option 5	No Below-Grade Parking	9,246	329	-13%	10%

Foundation Design Assumptions
The below-grade structure was designed as a tanked foundation system to meet the City of Toronto Foundation Drainage Provisions. The following assumptions were made on the soil properties:
(C) Groundwater table is between P1 and P2 elevation.

For no parking, structural tanking is not required as it is above the groundwater table.
Bearing capacity of soil/rock: 1100 kPa ULS.
Soil/rock bearing is valid for foundation depths associated with 1 level of underground parking.

Assumed that bottom of footings for the no below grade parking option is about 4.4 m below ground floor.
No surcharge loading from adjacent buildings.

Embodied Carbon of Whole Structure per Below-Grade Structure

Low-Carbon Pathways

Low-Carbon Pathways
The results of the various structural studies were used to determine low-carbon pathways for the full building structure. Two pathways were selected:

Pathway	Structural Systems	Comments
Ideal	165 mm PT slab with 4 " insulation and 2 layers of GWB for acoustic requirements No balconies Discrete columns with architectural demising walls at a $6.5 \mathrm{~m} \times 6.5 \mathrm{~m}$ grid, a central core and fin wall. Transfers at Level 2 only made up of transfer beams and a transfer slab for the scissor stair. One below-grade level.	This option is not considered realistic due to the acoustic requirements of the thin slab. One below-grade parking level was selected since no below-grade structure was deemed unrealistic for a building of this typology.
Practical	200 mm RC slab No balconies Discrete columns with architectural demising walls at a $6.5 \mathrm{~m} \times 6.5 \mathrm{~m}$ grid, a central core and fin wall. Transfers at Level 2 only made up of transfer beams and a transfer slab for the scissor stair. One below-grade level.	Although a PT slab system would achieve a larger grid layout, resulting in 2% embodied carbon savings, it is not standard construction in Ontario. Therefore, due to the minimal carbon reductions and added construction complexity, a standard reinforced concrete slab was selected.

Embodied Carbon of Whole Structure per Pathway

Embodied Carbon Results

Building System	GWP	GWP Intensity
	(tonnes $\left.\mathrm{CO}_{2} \mathrm{e}\right)$	$\left(\mathrm{kg} \mathrm{CO}_{2} \mathrm{e} / \mathrm{m}^{2}\right)$
Baseline (with balconies)	11,823	421
Ideal Pathway	7,659	273 (-35%)
Practical Pathway	8,545	304 (-28%)

> Low Carbon Design Pathway Takeaways

Good, Better, \& Best embodied carbon targets were set to align with IStructE's SCORS C, B, \& A ratings for LCA modules A1-A5.

- Good "C" rating $=200-250 \mathrm{~kg}$ CO2e/m2.

Better " B " rating $=150-200 \mathrm{~kg}$ CO2e/m2.
Best "A" rating $=100-150 \mathrm{~kg}$ CO2e $/ \mathrm{m} 2$.

The estimated GWP of all three designs for A1-A5 emissions is as follows:
$406 \mathrm{kgCO} 2 \mathrm{e} / \mathrm{m} 2$ for the Baseline,
$262 \mathrm{kgCO} 2 \mathrm{e} / \mathrm{m} 2$ for the Ideal Pathway
$293 \mathrm{kgCO} 2 \mathrm{e} / \mathrm{m} 2$ for the Realistic Pathway.
All of the designs exceeded the "C" rating (>250 kgCO2e/m2).

Low-Carbon

Material Pathways

Low-Carbon Material Pathways
The embodied carbon of the structure can be further reduced by selecting low-carbon materials. Several low-carbon iterations (LCI) were applied to the Ideal Pathway with the results summarized below. The description for the LCl's defines the changes from the baseline, all other conditions are the same.

Case	Description	GWP Intensity	Difference from Baseline
		($\mathrm{kg} \mathrm{CO}_{2} \mathrm{e} / \mathrm{m}^{2}$)	
Ideal Pathway (Baseline)	Industry average concrete mixes consisting of General Use Portland Cement (GU) and 10\% supplementary cementitious materials (SCM) content. Industry average reinforcing bars.	273	-
LCI-01	Concrete mixes with GU cement and 35-50\% slag cement.	235	-14\%
LCI-02	Concrete mixes with General Use Portland Limestone (GUL) cement and 35-50\% slag cement.	222	-18\%
LCI-03	Lafarge's ECOPact Entry Level low-carbon concrete.	215	-21\%
LCI-04	Lafarge's ECOPact Prime low-carbon concrete.	186	-32\%
LCI-05	Lower-carbon rebar: Gerdau's rebar produced at the Whitby, ON plant.	266	-2\%
Max LCI	LCI-04 and LCI-05	181	-34\%

Note:

- The LCIs are limited based on available lifecycle inventory data. For instance, another LCI would be a standard concrete mix with GUL cement. However, the EPD used for the analysis did not include this datapoint so it was not analyzed. Studies show that concrete with GUL cement has about 10% less embodied carbon than with GU cement.

All GWP values in the analysis represent current conditions and should be updated as more relevant data becomes available.

Low-Carbon Material Takeaways
High SCM \& low-carbon concrete products have performance implications, which could affect the construction schedule

Low-Carbon

Material Pathways

Low-Carbon Material Pathways
The embodied carbon of the structure can be further reduced by selecting low-carbon materials. Several low-carbon iterations (LCI) were applied to the
Practical Pathway with the results summarized below. The description for the LCl's defines the changes from the baseline, all other conditions are the same.

Case	Description	GWP Intensity	Difference from Baseline
		($\mathrm{kg} \mathrm{CO}_{2} \mathrm{e} / \mathrm{m}^{2}$)	
Practical Pathway (Baseline)	Industry average concrete mixes consisting of General Use Portland Cement (GU) and 10\% supplementary cementitious materials (SCM) content. Industry average reinforcing bars.	304	-
LCI-01	Concrete mixes with GU cement and 35-50\% slag cement.	262	-14\%
LCI-02	Concrete mixes with General Use Portland Limestone (GUL) cement and 35-50\% slag cement.	249	-18\%
LCI-03	Lafarge's ECOPact Entry Level low-carbon concrete.	240	-21\%
LCI-04	Lafarge's ECOPact Prime low-carbon concrete.	209	-31\%
LCI-05	Lower-carbon rebar: Gerdau's rebar produced at the Whitby, ON plant.	296	-3\%
Max LCI	LCI-04 and LCI-05	200	-34\%

Note:

- The LCIs are limited based on available lifecycle inventory data. For instance, another LCI would be a standard concrete mix with GUL cement. However, the EPD used for the analysis did not include this datapoint so it was not analyzed. Studies show that concrete with GUL cement has about 10% less embodied carbon than with GU cement.

All GWP values in the analysis represent current conditions and should be updated as more relevant data becomes available.

Low-Carbon Material Takeaways
High SCM \& low-carbon concrete products have performance implications, which could affect the construction schedule.

